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Quantum-thermal annealing with a cluster-flip algorithm

Satoshi Morita,l Sei Suzuki,2 and Tota Nakamura

3

"nternational School for Advanced Studies (SISSA), Trieste 34151, Italy
2De‘parl‘mem‘ of Physics and Mathematics, Aoyama Gakuin University, Fuchinobe, Sagamihara 229-8558, Japan
3College of Engineering, Shibaura Institute of Technology, Minuma-ku, Saitama 330-8570, Japan
(Received 9 March 2009; published 5 June 2009)

A quantum-thermal annealing method using a cluster-flip algorithm is studied in the two-dimensional spin-
glass model. The temperature (7) and the transverse field (I') are decreased simultaneously with the same rate
along a linear path on the 7-I" plane. We found that the additional pulse of the transverse field to the frozen
local spins produces a good approximate solution with a low computational cost.
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An optimization problem frequently appears in many situ-
ations of science and technology [1]. All known algorithms
need an exponentially long time to find the exact solution of
nondeterministic polynomial problems. The traveling sales-
man problem, the satisfiability problem, and the ground-state
search problem of spin glasses are the typical examples. It is
important to develop an efficient algorithm that provides an
approximate solution with a reasonable computational time.
A standard method for such problems is the classical
simulated-annealing (CA) method, which was proposed
based on an analogy between optimization problems and sta-
tistical mechanics [2,3]. The idea of CA is to identify the cost
function to be minimized with the energy in a statistical-
mechanical system. We perform a numerical simulation to
obtain the equilibrium state of this system. The temperature
is artificially introduced into the system and gradually de-
creased toward zero. The thermal fluctuations enable the sys-
tem to escape from the local minima of the cost function. At
low temperatures, the system may stay with a high probabil-
ity in the optimal state.

Quantum annealing (QA) is a novel algorithm proposed
as an alternative of CA [4-7]. We use the quantum fluctua-
tions instead of the thermal fluctuations. The quantum fluc-
tuations are introduced by the additional energy term that is
noncommutative with the cost function of the optimization
problem. In the Ising-spin model, the transverse magnetic
field (I") serves as this additional term. The additional term is
initially set to take a large value, so that the initial state is
disordered by the quantum fluctuations. It is gradually de-
creased with time, and it finally vanishes. Only the cost func-
tion term remains in the final state. It is expected that QA can
find an approximate solution more efficiently than CA be-
cause of the quantum tunneling between the local minima.
Analytical [8-10] and numerical [6,7,11] investigations sup-
port this scenario.

Although QA and CA have been studied a lot so far, hy-
brid methods of them have not attracted much attention. Lee
and Berne [12] applied a method which carries out QA and
CA alternately to the protein folding problem. Battaglia et al.
[13] examined a similar method to the satisfiability problem.
The present Rapid Communication aims to investigate
quantum-thermal annealing (QTA) that carries out QA and
CA simultaneously. In particular, we focus on the linear path
on the transverse field (I') vs temperature (7) plane where
these two parameters are lowered with keeping BI' constant
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(Fig. 1), where B=1/T. To investigate QTA numerically in
large systems, we used the path-integral Monte Carlo
(PIMC) method with the cluster-flip algorithm (the cluster-
flip PIMC) [14,15]. There are two reasons why the cluster-
flip PIMC is suitable for QTA: first, the cluster-flip PIMC
can simulate any Ising-spin system in the transverse field
without not only the error due to Suzuki-Trotter mapping
[16,17] but also the slowdown of relaxation known as the
Wiesler freezing [18]. Second, the computational cost is in-
dependent of the temperature and the transverse field if keep-
ing BI" constant.

The performance of QTA by the cluster-flip PIMC (the
cluster QTA) is governed by the parameter BI'. The residual
error is small but the computational cost becomes larger
when the value of BI is large. To solve this dilemma, we
introduce the local transverse-field pulse process. The main
result of the present Rapid Communication is that the cluster
QTA with the local pulse process exhibits the best perfor-
mance in comparison among various annealing methods with
regard to the residual energy and the computational cost.

Let us consider the transverse-field Ising model defined
by the Hamiltonian

N
H=—2JUO'?O§_F 0./;’ (1)
) i=

where o' (e=x,y,z) are the Pauli matrices of the spin 1/2
operator at a site i. The first term corresponds to the cost
function of the optimization problem we want to solve. The
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FIG. 1. Paths for three types of annealing method in the plane of
the temperature and the transverse field. Note that when the quan-
tum Monte Carlo method is applied to QA in practice, the QA path
is lifted from the I" axis because a small but nonzero temperature is
introduced.
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quenched random interaction J;; follows the Gaussian distri-
bution with the average 0 and the variance 1. We use, for the
Monte Carlo simulation, a single configuration of random
couplings on the 100 X 100 system with the periodic bound-
ary condition. We confirmed that the results given below are
consistent with similar simulations with other random con-
figurations on 50 X 50 and 30X 30 systems. The second term
is the transverse field, which introduces the quantum fluctua-
tion to the system.

In PIMC, the transverse-field Ising model is mapped to
the classical Ising model with an additional imaginary-time
dimension by the Suzuki-Trotter formula [16,17,19]. The
partition function at the inverse temperature [ is expressed
as

M N
Zy=Trexp| >, <§E JijSEm)S§m> +y> SE"’)SE'"J'I))
m=1 \ M (;j) =1

(2)

where M is the length along the extra dimension (Trotter
number) and ng) (== 1) denotes a classical Ising spin at a
site 7 on the mth Trotter slice. The boundary condition along
the imaginary-time direction is periodic, i.e., S,(-’"J“M):SE’”).
The nearest-neighbor interaction between adjacent Trotter
slices,

v= %ln(coth%F), (3)

is ferromagnetic. The mapped classical system is equivalent
to the original quantum system in the limit of the infinite
Trotter number. As far as the Trotter number is finite, the
error of quantum-classical mapping appears. To suppress the
error at low temperature, one has to choose a large Trotter
number. When the Trotter number is large, the simulation
suffers from the Wiesler freezing [18], where the spin-flip
probability becomes very small and the spin state freezes in
a practical computational time.

The cluster-flip algorithm proposed in Refs. [14,15]
solves the problems of the standard PIMC. The idea of the
present algorithm is to make an update global in the
imaginary-time direction and local in the real space. We cre-
ate clusters only in the imaginary-time direction in the same
manner as the Swendsen-Wang method [20]. Each cluster is
updated according to the local molecular field from the
neighboring sites. Since the correlated cluster in the
imaginary-time direction is flipped by one update trial, the
Wiesler freezing does not occur. Moreover, one can take the
infinite limit of the Trotter number by replacing dynamics of
clusters themselves to that of domain walls between clusters.
It follows that the error of the Suzuki-Trotter mapping dis-
appears. We can identify the spin states of the mapped clas-
sical system by the location of the domain walls and the spin
state on the lowest Trotter slice. The computational cost of
the cluster-flip PIMC is proportional to BI', which is the
average number of domain walls in the imaginary-time di-
rection at one site. This is contrasted with the standard
single-flip PIMC where the computational cost is governed
by the Trotter number M.
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FIG. 2. (Color online) Annealing time 7dependence of the mini-
mum residual energy per site for a 100 X 100 two-dimensional Ising
spin glass. The cluster QTA is performed with SI'=20 and 100.
Correspondingly, the cluster QA is done with =20 and 100. The
broken curve with upper triangles is the data obtained by the cluster
QTA with the local pulse process performed with SI'=10. The ini-
tial value of the transverse field is chosen to be I'y=1 in all cases.
Each annealing method is tried at least 100 times.

In QTA, we employ the schedule of the transverse field
given by

L()=Ty(1-tm, 4)

where I'j is the initial value and 7 is the annealing time. The
Monte Carlo step t moves from =0 to r=7. We decrease the
transverse field and the temperature simultaneously while
keeping BI" constant. Note that the convergence annealing
schedule for QTA is the inverse-logarithmic law of the tem-
perature and the transverse field [21], which is slower than
the power-law schedule for QA. However, the system surely
converges to the desired optimal state in the infinite time
limit. We also consider the standard annealing schedule of
QA for comparison, in which the transverse field is decreased
as Eq. (4) with the temperature fixed at a sufficiently low
value.

The initial cluster states in QTA and QA are made by
giving the position of domain walls by the Poisson process
with the mean value BI'. If the number of generated domain
walls, ng4,, is odd, one of the domain walls is removed to
obey the periodic boundary conditions along the imaginary-
time direction. Since the expectation value of o™ is ng, /B’
in the infinite limit of the Trotter number, the initial state
corresponds to the all-up state along the x axis.

Figure 2 shows minimum residual energies of QTA and
QA by the cluster-flip PIMC against the annealing time 7.
The minimum residual energy is defined by the difference
between the lowest energy in all the Trotter slices and the
ground-state energy. The ground-state energy was obtained
by the spin-glass server [22]. The parameters BI" for QTA
and B for QA are set at BI'=B8=20 or BI'=B=100. The
initial value of the transverse field is chosen at I'y=1 in all
cases. Every simulation is repeated at least 100 times.

As common to QTA and QA, when BI' or B is small, the
residual energy rapidly decays for small 7, while it is almost
saturated for large 7. The change in the residual energy curve
from a rapid decay to a slow decay is understood as a cross-
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FIG. 3. (Color online) Comparison of the minimum residual
energies per site obtained by the cluster QTA, single QA, and CA.
The abscissa is the computational cost (total CPU time) which is
defined by the annealing time 7 multiplied by BI" for the cluster
QTA, 7 multiplied by M for the single QA, and 7 for CA. The initial
temperature for CA is Ty=3 and the initial transverse field for the
other methods is set I'p=1.

over from the intrinsic curve of QA to the curve of QA with
strong thermal disturbances [23]. The cluster QTA with 8I'
=100 preserves the large decay rate longer than that with
BI'=20. Since the thermal fluctuation is less effective when
PBI is large, the rapid decay is attributed to QA at zero tem-
perature. On the contrary, the thermal fluctuation begins to
dominate the dynamics as 7 becomes large. The system finds
itself at the finite temperature after the long Monte Carlo
steps. This is because the rate of nonadiabatic transition is
suppressed and the excitation occurs due to very small but
finite thermal fluctuations. We observed that the similar
crossover takes place also in the QA by the single-flip PIMC
(see data of M=8=20 in Fig. 3), as it has been recognizable
in Fig. 1 of Ref. [11].

For large 7, after the crossover takes place, the final state
of the cluster QTA is a classical state in which no domain
wall is present at all. Such a state loses the quantum fluctua-
tions represented by ng4,/BI". Once a spin falls into a classi-
cal state which minimizes the cost function locally, it can
hardly escape from the local minimum. Therefore, we intro-
duce the local pulse process.

The local pulse process is applied to a real-space site
when there is no domain wall along the imaginary-time di-
rection at this site. What is done in this process is to reini-
tialize the cluster state, so that it contains BI' domain walls
on average as in the disordered initial state. The other sites
are left untouched. This process is physically interpreted as
an application of the on-site transverse-field pulse. The pulse
process destroys classical states by creating domain walls
and induces extra quantum fluctuations. It helps the spin
state to escape from the local minimum. An increase in en-
ergy caused by this process is on the order of unity because
it is applied locally. It is noted that every site always has at
least two domain walls during the whole annealing process.
However, this constraint does not matter for the spin-glass
model we have investigated. Because of the global spin-flip
symmetry, the final spin state is expected to contain both the
ground state and its spin-flip state. For the system without
the spin-flip symmetry, we might need to stop the pulse pro-
cess at some time.

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 79, 065701(R) (2009)

The broken curve connecting upward triangles in Fig. 2
shows the performance of the cluster QTA with the local
pulse process. Even if we choose BI'=10, the residual energy
continues to decay without the crossover. We found that the
parameter BI'=10 is almost optimal for the cluster QTA with
the pulse process. If B is larger than 10, a larger computa-
tional cost is needed to obtain the same residual energy. On
the other hand, the smaller BI' causes insufficient quantum
fluctuations which raise the residual energy. The additional
cost of computation by the pulse process is only about the
factor of 0.2 of the whole computational time. It is because
the pulse process is not always applied and the reinitializa-
tion of the cluster state does not cost as much as the update.

Figure 3 shows the residual energy against the computa-
tional cost. We performed not only the cluster QTA but also
CA and QA by the single-flip PIMC (single QA) on the same
sample. In CA, we chose a completely random spin configu-
ration as an initial state and the temperature is decreased
linearly from the initial value, T,=3, to zero. As for the
single QA, the initial spin configuration is completely ran-
dom in the (2+1)-dimensional space. The inverse tempera-
ture B is fixed to the Trotter number M according to Ref.
[11], and the initial value of the transverse field is set at I’
=1. These initial values for 7 and I" are almost optimized so
as to obtain the lowest residual energy. The residual energy
in the single QA is obtained from the lowest energy among
all the Trotter slices. The computational cost is defined by 7
multiplied by BI" for the cluster QTA, 7 multiplied by M for
the single QA, and 7 for CA, which roughly correspond to
the total CPU time.

Apparently the decay rate of CA (solid curve) is slower
than others. The single QA and the cluster QTA with and
without the pulse process have similar decay rates. However,
the cluster QTA with the pulse process achieves the highest
efficiency compared with other methods. It is clearly ob-
served both in Figs. 2 and 3 that the crossover appears when
a value of BI" or B is small. We consider that it appears much
later in case when BI" is large. The crossover prevents us
from obtaining a lower residual energy. We must choose a
large value of BI" in order to avoid the crossover. However,
we must pay much computational cost in turn. The cluster
QTA with the local pulse process is the solution of this di-
lemma. We put the quantum fluctuations not to the whole
system but only to the spin that is frozen earlier. This is the
main reason why we can achieve the lower residual energy
very efficiently.

In conclusion, we investigated QTA implemented by the
cluster-flip PIMC and revealed that the local transverse-field
pulse improves the performance of QTA. In practice, we
showed that QTA with the pulse process gives the best per-
formance with respect to the residual energy and the compu-
tational cost, compared to CA, QA, and QTA without the
pulse process. Although we have considered only the two-
dimensional Ising spin glass, it is noteworthy that QA by the
single-flip method was reported not to be better than CA in a
satisfiability problem [13]. Whether QTA by the cluster-flip
method works well in such a harder optimization problem is
the future problem.
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